Bioengineering and Bioinformatics

MASTER OF SCIENCE DEGREE PROGRAMS

UIC ENGINEERING
UIC offers two master’s programs designed to prepare you for a wide range of career paths in the biomedical field: the MS in Bioengineering and the MS in Bioinformatics. These degrees foster entrepreneurship across the fields of bioengineering and bioinformatics—an outlook that is useful whether you want to start a company or just bring the most creative, innovative ideas to the institution where you work.

IDEAL FOR STUDENTS WHO SEEK RESEARCH CAREERS IN:

- Corporations
- Government Laboratories
- Hospitals
- Medical Schools
- Universities

Our master of science programs can be completed in two ways:

THESIS OPTION

In conjunction with your coursework, the thesis option, available for either bioengineering or bioinformatics, pairs you with a faculty mentor and gives you the opportunity to write an original research-based thesis on a topic that interests you. Students have found that the specialization of a thesis makes them more marketable to employers. Thesis experience also is ideal for students who might want to continue on for doctoral study after the MS.

COURSEWORK OPTION

The coursework-only option, also available for either bioengineering or bioinformatics, allows you to complete your MS degree through our comprehensive selection of courses, which are taught by innovators and leaders in the field.

UIC’s Academic Strengths

Medical Devices:
- Cell and Tissue Engineering
- Neural Engineering
- Medical Imaging

Medical-Industry Skills:
- Medical Technology Assessment
- Quality Assurance for Medical Products
- FDA and ISO Standards

Featured Courses

What will you take as an MS student at UIC? Explore your choices at bioe.uic.edu (see the Courses page under the Graduate menu). Here are a few that have captured our current students’ attention—and that have proved especially valuable in their careers after UIC.

BIOE 484 WEARABLES AND NEARABLES TECHNOLOGY LABORATORY

Develop the skills needed to be part of the wearables and nearables revolution. Students combine sensors, software platforms, and Bluetooth technology to create wearable and nearable devices. An open-ended project module allows students to collaborate with a selected industry partner on a real-world problem, potentially leading to a future internship.

BIOE 494 QUANTITATIVE PHYSIOLOGY

This course teaches the fundamentals of human organ systems from a quantitative perspective, making it possible to predict physiological outcomes for healthcare. Students are introduced to cutting-edge examples in bioengineering research and development, including pharmaceuticals and regenerative medicine.

BIOE 525 PHYSIOLOGICAL AND CELLULAR EFFECTS OF BIOMECHANICS FORCES

In this class, students discover how biomechanical forces are generated, the impact the forces have on cells and tissues, and methods for studying them. This course also delves into the mechanisms by which a cell may sense forces and send this information to its nucleus.

International Programs

UIC’s international partnership programs allow students from specific universities around the world to complete part of their higher education in our department, potentially culminating in an MS in Bioengineering or MS in Bioinformatics from UIC. Learn more at go.uic.edu/COEinternational.

A Step Ahead

Thanks to the strength of our curriculum and UIC’s global connections, many MS students are able to get internships that help them level up their career planning.

Achal Gupta

Internship: Tekscan Inc.
Location: Boston, MA
Assignment: Helping to make sure that products meet strict regulatory standards, including designing plans for tests and working with external labs to execute those tests.
Advantages: Managing multiple projects, applying classroom knowledge, and being a self-starter.
His perspective: “Bioengineering is a perfect combination of both biology and engineering. Medical-device companies are eagerly looking for candidates who have this background, as they can bridge the gaps between engineering and any other departments and provide solutions in a biology-oriented way.”

Frehiwot Woldeyes

Internship: Medical Accelerator for Devices Laboratory
Location: Chicago, IL
Assignment: Developing a prototype for monitoring intracranial pressure (ICP) for patients with traumatic brain injury. Her involvement began with the development of an algorithm to interpret brain signals and evolved into building electrical models to acquire and process those signals.
Her perspective: “UIC Bioengineering’s course offerings are very specific to students’ areas of interest, and the department has various research labs that students can choose to engage in. In addition, students in the department are from different cultural backgrounds, which for me, an international student from Ethiopia, created a feeling of home.”
Carlos Ng
Microdevice Design Research Assistant, Wyss Institute

Microfluidics—an area of incredible strength among UIC bioengineering faculty—has become Carlos Ng’s area of expertise, too. Microfluidics lies at the core of what is called “lab on a chip” technology, which replicates the structure and function of living organs at microscale and could one day eliminate animal models for drug development and other research.

An “organ on a chip” is among Ng’s projects at the Wyss Institute, which is affiliated with Harvard Medical School. There, he develops microfluidics prototyping platforms, learns mass-production techniques that can be used to make microfluidics devices commercially available, and oversees a clean room research facility.

Ng’s UIC course recommendation: BIOE 518 Controlled Drug Delivery. Students discuss drug-delivery systems that succeeded or failed in the market, propose their own systems, and present them—mirroring the process that researchers pursue throughout their careers.

Gardner Yost
First-Year Resident Physician, University of Michigan Department of Cardiothoracic Surgery

Gardner Yost’s daily tasks are familiar to any surgical resident: morning rounds, scrubbing in to at least one surgery alongside an attending physician, caring for patients on the wards, and attending lectures and simulations.

As a bioengineering graduate, however, Yost brings a fresh view. “The skill of thinking like an engineer—problem-solving, critical analysis, and thorough methods of developing a solution—are increasingly valued in medicine,” he said. He notices the difference in his approach: if most people’s instinct when facing a medical problem is to ask “how do we fix this now,” Yost has “a mindset that desires to solve larger issues, systems issues.” Yost worked in collaboration with Advocate Christ Medical Center while he did his MS in Bioengineering at UIC, and he cites UIC’s connection with hospitals and healthcare groups throughout Chicago as one of the most valuable elements of his master’s program.

Admissions

Full details on how to apply—including requirements and deadlines—are at bioe.uic.edu under the Graduate menu. Interested in graduate study in bioengineering or bioinformatics at UIC? Talk to us. Contact our graduate team with questions or for an informal conversation.

David Eddington, PhD
Professor and Director of Graduate Studies
gradbioe@uic.edu

Susan Lee
Student Affairs
bioe@uic.edu